We consider partial abelian monoids, in particular generalized effect algebras. From the given structures, we construct new ones by introducing a new operation , which is given by restriction of the original partial operation + with respect to a special subset called preideal. We bring some derived properties and characterizations of these new built structures, supporting the results by illustrative examples.
Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.
We show that an effect tribe of fuzzy sets with the property that every is -measurable, where is the family of subsets of whose characteristic functions are central elements in , is a tribe. Moreover, a monotone -complete effect algebra with RDP with a Loomis-Sikorski representation , where the tribe has the property that every is -measurable, is a -MV-algebra.
Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered -effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a -MV algebra, and every observable is defined by a smearing of a sharp...
We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend...
Download Results (CSV)