The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Green functions, Segre numbers, and King’s formula

Mats AnderssonElizabeth Wulcan — 2014

Annales de l’institut Fourier

Let 𝒥 be a coherent ideal sheaf on a complex manifold X with zero set Z , and let G be a plurisubharmonic function such that G = log | f | + 𝒪 ( 1 ) locally at Z , where f is a tuple of holomorphic functions that defines 𝒥 . We give a meaning to the Monge-Ampère products ( d d c G ) k for k = 0 , 1 , 2 , ... , and prove that the Lelong numbers of the currents M k 𝒥 : = 1 Z ( d d c G ) k at x coincide with the so-called Segre numbers of J at x , introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that M k 𝒥 satisfy a certain generalization...

On Bochner-Martinelli residue currents and their annihilator ideals

Mattias JonssonElizabeth Wulcan — 2009

Annales de l’institut Fourier

We study the residue current R f of Bochner-Martinelli type associated with a tuple f = ( f 1 , , f m ) of holomorphic germs at 0 C n , whose common zero set equals the origin. Our main results are a geometric description of R f in terms of the Rees valuations associated with the ideal ( f ) generated by f and a characterization of when the annihilator ideal of R f equals ( f ) .

Stabilization of monomial maps in higher codimension

Jan-Li LinElizabeth Wulcan — 2014

Annales de l’institut Fourier

A monomial self-map f on a complex toric variety is said to be k -stable if the action induced on the 2 k -cohomology is compatible with iteration. We show that under suitable conditions on the eigenvalues of the matrix of exponents of f , we can find a toric model with at worst quotient singularities where f is k -stable. If f is replaced by an iterate one can find a k -stable model as soon as the dynamical degrees λ k of f satisfy λ k 2 > λ k - 1 λ k + 1 . On the other hand, we give examples of monomial maps f , where this condition...

Page 1

Download Results (CSV)