An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection from e to X has fixed cardinality n+1 ( arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection from e to X where X is a compact subset of .
Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by the set of all X ∈ K() such that the farthest distance mapping is multivalued on a dense subset of . It is proved that is a residual dense subset of K().
An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].
The existence of continuous selections is proved for a class of lower semicontinuous multifunctions whose values are closed convex subsets of a complete metric space equipped with an appropriate notion of convexity. The approach is based on the notion of pseudo-barycenter of an ordered n-tuple of points.
Let E be an infinite dimensional separable space and for e ∈ E
and X a nonempty compact convex subset of E, let qX(e) be the metric
antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown
that for a typical (in the sence of the Baire category) compact convex set
X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every
e in a dense subset of E.
Download Results (CSV)