On Boundary Behaviour of Harmonic Functions in Hölder Domains.
In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.
Nous présentons une condition suffisante pour qu’un compact dans le groupe de Heisenberg (muni de sa structure de Carnot-Carathéodory) soit contenu dans une courbe rectifiable. Cette condition est aussi nécessaire dans le cas de courbes régulières (en particulier, des géodésiques) et elle est inspirée du lemme géométrique faible du à Peter Jones dans le cas euclidien. Cette note repose sur l’exposé fait par le troisième auteur (au Séminaire X-EDP) et décrit les principaux résultats de l’article...
Page 1