A counterexample to a group completion conjecture of J. C. Moore.
A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at least three distinct colours. Acyclic colourings were introduced by Gr¨unbaum in 1973, and since then have...
In this paper a concept 𝓠-Ramsey Class of graphs is introduced, where 𝓠 is a class of bipartite graphs. It is a generalization of well-known concept of Ramsey Class of graphs. Some 𝓠-Ramsey Classes of graphs are presented (Theorem 1 and 2). We proved that 𝓣₂, the class of all outerplanar graphs, is not 𝓓₁-Ramsey Class (Theorem 3). This results leads us to the concept of acyclic reducible bounds for a hereditary property 𝓟 . For 𝓣₂ we found two bounds (Theorem 4). An improvement, in some sense,...
We show that the geometric realization of a cyclic set has a natural, -equivariant, cellular decomposition. As an application, we give another proof of a well-known isomorphism between cyclic homology of a cyclic space and -equivariant Borel homology of its geometric realization.
For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that and is acyclic. A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring. If ⊆ R,...
The hereditary property of hypergraphs generated by the cost colouring notion is considered in the paper. First, we characterize all maximal graphs with respect to this property. Second, we give the generating function for the sequence describing the number of such graphs with the numbered order. Finally, we construct a maximal hypergraph for each admissible number of vertices showing some density property. All results can be applied to the problem of information storage.
Page 1