Multivalued -Liénard systems.
In this paper we consider nonlinear periodic systems driven by the one-dimensional -Laplacian and having a nonsmooth locally Lipschitz potential. Using a variational approach based on the nonsmooth Critical Point Theory, we establish the existence of a solution. We also prove a multiplicity result based on a nonsmooth extension of the result of Brezis-Nirenberg (Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.) due to Kandilakis-Kourogenis-Papageorgiou...
In this paper we consider a nonlinear periodic system driven by the vector ordinary -Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.
We consider first order periodic differential inclusions in . The presence of a subdifferential term incorporates in our framework differential variational inequalities in . We establish the existence of extremal periodic solutions and we also obtain existence results for the “convex” and “nonconvex”problems.
Page 1