Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Diastolic and isoperimetric inequalities on surfaces

Florent BalacheffStéphane Sabourau — 2010

Annales scientifiques de l'École Normale Supérieure

We prove a universal inequality between the diastole, defined using a minimax process on the one-cycle space, and the area of closed Riemannian surfaces. Roughly speaking, we show that any closed Riemannian surface can be swept out by a family of multi-loops whose lengths are bounded in terms of the area of the surface. This diastolic inequality, which relies on an upper bound on Cheeger’s constant, yields an effective process to find short closed geodesics on the two-sphere, for instance. We deduce...

Stable norms of non-orientable surfaces

Florent BalacheffDaniel Massart — 2008

Annales de l’institut Fourier

We study the stable norm on the first homology of a closed non-orientable surface equipped with a Riemannian metric. We prove that in every conformal class there exists a metric whose stable norm is polyhedral. Furthermore the stable norm is never strictly convex if the first Betti number of the surface is greater than two.

Optimalité systolique infinitésimale de l’oscillateur harmonique

J.C. Álvarez PaivaFlorent Balacheff

Séminaire de théorie spectrale et géométrie

Nous étudions les aspects infinitésimaux du problème suivant. Soit H un hamiltonien de 2 n dont la surface d’énergie { H = 1 } borde un domaine compact et étoilé de volume identique à celui de la boule unité de 2 n . La surface d’énergie { H = 1 } contient-elle une orbite périodique du système hamiltonien q ˙ = H p p ˙ = - H q dont l’action soit au plus π  ?

Page 1

Download Results (CSV)