Sur des problèmes de la géométrie systolique
We prove a universal inequality between the diastole, defined using a minimax process on the one-cycle space, and the area of closed Riemannian surfaces. Roughly speaking, we show that any closed Riemannian surface can be swept out by a family of multi-loops whose lengths are bounded in terms of the area of the surface. This diastolic inequality, which relies on an upper bound on Cheeger’s constant, yields an effective process to find short closed geodesics on the two-sphere, for instance. We deduce...
We study the stable norm on the first homology of a closed non-orientable surface equipped with a Riemannian metric. We prove that in every conformal class there exists a metric whose stable norm is polyhedral. Furthermore the stable norm is never strictly convex if the first Betti number of the surface is greater than two.
In this note, we observe that the maximum value achieved by the systole function over all complete finite area hyperbolic surfaces of a given signature is greater than a function that grows logarithmically in terms of the ratio .
Nous étudions les aspects infinitésimaux du problème suivant. Soit un hamiltonien de dont la surface d’énergie borde un domaine compact et étoilé de volume identique à celui de la boule unité de . La surface d’énergie contient-elle une orbite périodique du système hamiltonien dont l’action soit au plus ?
Page 1