The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Fonctions à hessien borné

Françoise Demengel — 1984

Annales de l'institut Fourier

Cet article établit quelques propriétés des distributions sur un ouvert Ω de R N dont le hessien est une mesure bornée. Après quelques propriétés topologiques – Compacité faible des bornées de H B ( Ω ) lorsque Ω est borné, densité des fonctions régulières pour une topologie assez finie – on s’intéresse au comportement sur le bord de Ω lorsque Ω est assez régulier; pour ce faire, on est amené à étudier celui des fonctions de W 2 , 1 . On montre enfin dans une 3ème partie des théorèmes d’injection de Sobolev et notamment...

On Some Nonlinear Partial Differential Equations Involving the “1”-Laplacian and Critical Sobolev Exponent

Françoise Demengel — 2010

ESAIM: Control, Optimisation and Calculus of Variations

Let Ω be a smooth bounded domain in 𝐑 n , n > 1, let a and f be continuous functions on Ω ¯ , 1 = n n - 1 . We are concerned here with the existence of solution in B V ( Ω ) , positive or not, to the problem:
 - div σ + a ( x ) s i g n u a m p ; = f | u | 1 - 2 u σ . u a m p ; = | u | in Ω u is not identically zero , a m p ; - σ . n ( u ) = | u | on Ω . This problem is closely related to the extremal functions for the problem of the best constant of W 1 , 1 ( Ω ) into L N N - 1 ( Ω ) .

Page 1

Download Results (CSV)