The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The Bergman kernel functions of certain unbounded domains

Friedrich Haslinger — 1998

Annales Polonici Mathematici

We compute the Bergman kernel functions of the unbounded domains Ω p = ( z ' , z ) ² : z > p ( z ' ) , where p ( z ' ) = | z ' | α / α . It is also shown that these kernel functions have no zeros in Ω p . We use a method from harmonic analysis to reduce the computation of the 2-dimensional case to the problem of finding the kernel function of a weighted space of entire functions in one complex variable.

The ¯ -Neumann operator and commutators of the Bergman projection and multiplication operators

Friedrich Haslinger — 2008

Czechoslovak Mathematical Journal

We prove that compactness of the canonical solution operator to ¯ restricted to ( 0 , 1 ) -forms with holomorphic coefficients is equivalent to compactness of the commutator [ 𝒫 , M ¯ ] defined on the whole L ( 0 , 1 ) 2 ( Ω ) , where M ¯ is the multiplication by z ¯ and 𝒫 is the orthogonal projection of L ( 0 , 1 ) 2 ( Ω ) to the subspace of ( 0 , 1 ) forms with holomorphic coefficients. Further we derive a formula for the ¯ -Neumann operator restricted to ( 0 , 1 ) forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications...

Page 1

Download Results (CSV)