The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Concise but self-contained reviews are given on theories of majorization and symmetrically normed ideals, including the proofs of the Lidskii-Wielandt and the Gelfand-Naimark theorems. Based on these reviews, we discuss logarithmic majorizations and norm inequalities of Golden-Thompson type and its complementary type for exponential operators on a Hilbert space. Furthermore, we obtain norm convergences for the exponential product formula as well as for that involving operator means.
We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.
A new concept of mutual pressure is introduced for potential functions on both continuous and discrete compound spaces via discrete micro-states of permutations, and its relations with the usual pressure and the mutual information are established. This paper is a continuation of the paper of Hiai and Petz in Banach Center Publications, Vol. 78.
A new expression as a certain asymptotic limit via "discrete micro-states" of permutations is provided for the mutual information of both continuous and discrete random variables.
Download Results (CSV)