Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

An arithmetic Riemann-Roch theorem for pointed stable curves

Gérard Freixas Montplet — 2009

Annales scientifiques de l'École Normale Supérieure

Let ( 𝒪 , Σ , F ) be an arithmetic ring of Krull dimension at most 1, 𝒮 = Spec 𝒪 and ( π : 𝒳 𝒮 ; σ 1 , ... , σ n ) an n -pointed stable curve of genus g . Write 𝒰 = 𝒳 j σ j ( 𝒮 ) . The invertible sheaf ω 𝒳 / 𝒮 ( σ 1 + + σ n ) inherits a hermitian structure · hyp from the dual of the hyperbolic metric on the Riemann surface 𝒰 . In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of ω 𝒳 / 𝒮 ( σ 1 + ... + σ n ) hyp . The theorem is applied to modular curves X ( Γ ) , Γ = Γ 0 ( p ) or Γ 1 ( p ) , p 11 prime, with sections given by the cusps. We show Z ' ( Y ( Γ ) , 1 ) e a π b Γ 2 ( 1 / 2 ) c L ( 0 , Γ ) , with p 11 m o d 12 when Γ = Γ 0 ( p ) . Here Z ( Y ( Γ ) , s ) is the Selberg zeta...

An arithmetic Hilbert–Samuel theorem for pointed stable curves

Gerard Freixas i Montplet — 2012

Journal of the European Mathematical Society

Let ( 𝒪 , , F ) be an arithmetic ring of Krull dimension at most 1 , S = Spec ( 𝒪 ) and ( 𝒳 S ; σ 1 , ... , σ n ) a pointed stable curve. Write 𝒰 = 𝒳 j σ j ( S ) . For every integer k > 0 , the invertible sheaf ω 𝒳 / S k + 1 ( k σ 1 + ... + k σ n ) inherits a singular hermitian structure from the hyperbolic metric on the Riemann surface 𝒰 . In this article we define a Quillen type metric · Q on the determinant line λ k + 1 = λ ω 𝒳 / S k + 1 ( k σ 1 + ... + k σ n ) and compute the arithmetic degree of ( λ k + 1 , · Q ) by means of an analogue of the Riemann–Roch theorem in Arakelov geometry. As a byproduct, we obtain an arithmetic Hilbert–Samuel formula:...

The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms

José Ignacio Burgos GilGerard Freixas i MontpletRăzvan Liţcanu — 2014

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.

Generalized holomorphic analytic torsion

José Ignacio Burgos GilGerard Freixas i MontpletRăzvan Liţcanu — 2014

Journal of the European Mathematical Society

In this paper we extend the holomorphic analytic torsion classes of Bismut and Köhler to arbitrary projective morphisms between smooth algebraic complex varieties. To this end, we propose an axiomatic definition and give a classification of the theories of generalized holomorphic analytic torsion classes for projective morphisms. The extension of the holomorphic analytic torsion classes of Bismut and Köhler is obtained as the theory of generalized analytic torsion classes associated to R = 2 , R being...

Page 1

Download Results (CSV)