The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider complex-valued solutions of the Ginzburg–Landau equation on a smooth bounded simply connected domain of , , where is a small parameter. We assume that the Ginzburg–Landau energy verifies the bound (natural in the context) , where is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of , as , is to establish uniform bounds for the gradient, for some . We review some recent techniques developed in...
We consider complex-valued solutions u of
the Ginzburg–Landau equation on a smooth bounded simply connected
domain of , ≥ 2, where ε > 0 is
a small parameter. We assume that the
Ginzburg–Landau energy verifies the bound
(natural in the context)
, where
is some given constant. We
also make several assumptions on the boundary data. An
important step in the asymptotic analysis of u, as
ε → 0, is to establish uniform bounds for the
gradient, for some . We review...
We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.
The distributional -dimensional Jacobian of a map in the Sobolev space
which takes values in the sphere can be viewed as the boundary of a rectifiable current of codimension carried by (part of) the singularity of which is topologically relevant. The main purpose of this paper is to investigate the range of the
Jacobian operator; in particular, we show that any boundary of codimension can be realized as Jacobian of a Sobolev map valued in . In case is polyhedral, the map we construct...
We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if ).
Download Results (CSV)