The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Nous montrons que le prolongement des homotopies, propriété de certains feuilletages étudiée par Godbillon, équivaut à la réunion de trois conditions indépendantes : la condition de Barre, qui est transverse ; la trivialité des cycles évanouissants de toutes dimensions, et la trivialité des cycles apparents de toutes dimensions. On établit que pour les feuilletages riemanniens et pour les feuilletages géodésibles, la propriété équivaut à l’absence d’holonomie. Ces résultats sont ensuite appliqués...
On étudie les morphismes d’un groupe infini discret dans un groupe de Lie contenu dans le groupe des difféomorphismes de la droite réelle. À un tel morphisme , on associe deux ensembles de “bouts” de “dans la direction” . On calcule le nombre de bouts dans plusieurs situations. Dans le cas particulier où est de type fini et où est le groupe des translations, n’a qu’un bout dans la direction si, et seulement si, ils vérifient la propriété de Bieri-Neumann-Strebel.
Download Results (CSV)