The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 16 of 16

Showing per page

Order by Relevance | Title | Year of publication

Properties of product preserving functors

Gancarzewicz, JacekMikulski, WłodzimierzPogoda, Zdzisław — 1994

Proceedings of the Winter School "Geometry and Physics"

A product preserving functor is a covariant functor from the category of all manifolds and smooth mappings into the category of fibered manifolds satisfying a list of axioms the main of which is product preserving: ( M 1 × M 2 ) = ( M 1 ) × ( M 2 ) . It is known that any product preserving functor is equivalent to a Weil functor T A . Here T A ( M ) is the set of equivalence classes of smooth maps ϕ : n M and ϕ , ϕ ' are equivalent if and only if for every smooth function f : M the formal Taylor series at 0 of f ϕ and f ϕ ' are equal in A = [ [ x 1 , , x n ] ] / 𝔞 . In this paper all...

Liftings of functions and vector fields to natural bundles

CONTENTS0. Introduction...................................................................................................51. Natural bundles...........................................................................................102. Liftings of functions.....................................................................................153. Liftings of functions to the r-frame bundle...................................................224. A space of liftings of functions.....................................................................265....

Connections of higher order and product preserving functors

Jacek GancarzewiczNoureddine RahmaniModesto R. Salgado — 2002

Czechoslovak Mathematical Journal

In this paper we consider a product preserving functor of order r and a connection Γ of order r on a manifold M . We introduce horizontal lifts of tensor fields and linear connections from M to ( M ) with respect to Γ . Our definitions and results generalize the particular cases of the tangent bundle and the tangent bundle of higher order.

Page 1

Download Results (CSV)