Soit un groupe arithmétique agissant proprement discontinument sur de covolume fini. On sait que l’espace est isomorphe à l’ensemble des points complexes d’une variété algébrique quasi-projective définie sur . Soit : une application holomorphe invariante par l’action de et correctement normalisée. Grâce au résultats obtenus par P. Cohen, H. Shiga et J. Wolfart, on sait que si est un point algébrique non spécial de . Dans cet article, nous allons montrer que nous avons si ...
Soit un objet algébrique (par exemple une courbe ou un revêtement) défini sur et de corps des modules un corps de nombres . Il est bien connu que n’admet pas nécessairement de -modèle. En utilisant deux résultats récents dus à P. Dèbes, J.-C. Douai et M. Emsalem nous donnerons un majorant pour le degré d’un corps de définition de sur . Dans une deuxième partie, nous donnerons des conditions suffisantes sur l’ordre de Aut() pour que admette un -modèle.
Download Results (CSV)