The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation

Georgios E. Zouraris — 2001

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the L 2 norm. We prove optimal order a priori error estimates in the L 2 and H 1 norms, under mild mesh conditions for two and three space dimensions.

Theory and numerical approximations for a nonlinear 1 + 1 Dirac system

Nikolaos BournaveasGeorgios E. Zouraris — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order error estimates in various discrete norms and showing results from numerical experiments.

Theory and numerical approximations for a nonlinear 1 + 1 Dirac system

Nikolaos BournaveasGeorgios E. Zouraris — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order error estimates in various discrete norms and showing results from numerical experiments.

Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise

Georgios T. KossiorisGeorgios E. Zouraris — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

We consider an initial and Dirichlet boundary value problem for a fourth-order linear stochastic parabolic equation, in one space dimension, forced by an additive space-time white noise. Discretizing the space-time white noise a modelling error is introduced and a regularized fourth-order linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem are constructed by using, for discretization in space, a Galerkin finite element method...

Page 1

Download Results (CSV)