On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation

Georgios E. Zouraris

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 35, Issue: 3, page 389-405
  • ISSN: 0764-583X

Abstract

top
We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the L2 norm. We prove optimal order a priori error estimates in the L2 and H1 norms, under mild mesh conditions for two and three space dimensions.

How to cite

top

Zouraris, Georgios E.. "On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation." ESAIM: Mathematical Modelling and Numerical Analysis 35.3 (2010): 389-405. <http://eudml.org/doc/197599>.

@article{Zouraris2010,
abstract = { We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the L2 norm. We prove optimal order a priori error estimates in the L2 and H1 norms, under mild mesh conditions for two and three space dimensions. },
author = {Zouraris, Georgios E.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonlinear Schrödinger equation; two-step time discretization; linearly implicit method; finite element method; L2 and H1 error estimates; optimal order of convergence.; nonlinear Schrödinger equation; convergence; error bounds},
language = {eng},
month = {3},
number = {3},
pages = {389-405},
publisher = {EDP Sciences},
title = {On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation},
url = {http://eudml.org/doc/197599},
volume = {35},
year = {2010},
}

TY - JOUR
AU - Zouraris, Georgios E.
TI - On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 3
SP - 389
EP - 405
AB - We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the L2 norm. We prove optimal order a priori error estimates in the L2 and H1 norms, under mild mesh conditions for two and three space dimensions.
LA - eng
KW - Nonlinear Schrödinger equation; two-step time discretization; linearly implicit method; finite element method; L2 and H1 error estimates; optimal order of convergence.; nonlinear Schrödinger equation; convergence; error bounds
UR - http://eudml.org/doc/197599
ER -

References

top
  1. S.A. Akhamanov, A.P. Sukhonorov and R.V. Khoklov, Self-focusing and self-trapping of intense light beams in a nonlinear medium. Sov. Phys. JETP23 (1966) 1025-1033.  
  2. G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal.13 (1993) 115-124.  
  3. G.D. Akrivis, V.A. Dougalis and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math.59 (1991) 31-53.  
  4. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math.15, Springer-Verlag, New York (1994).  
  5. H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations. Nonlinear Analysis4 (1980) 677-681.  
  6. T. Cazenave and A. Haraux, Introduction aux problémes d'évolution semi-linéaires. Ellipses, Paris (1990).  
  7. R.Y. Chiao, E. Garmire and C. Townes, Self-trapping of optical beams. Phys. Rev. Lett.13 (1964) 479-482.  
  8. A. Cloot, B.M. Herbst and J.A.C. Weideman, A numerical study of the nonlinear Schrödinger equation involving quintic terms. J. Comput. Phys.86 (1990) 127-146.  
  9. Z. Fei, V.M. Pérez-García and L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput.71 (1995) 165-177.  
  10. Y. Jingqi, Time decay of the solutions to a nonlinear Schrödinger equation in an exterior domain in 2 . Nonlinear Analysis19 (1992) 563-571.  
  11. O. Karakashian, G.D. Akrivis and V.A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal.30 (1993) 377-400.  
  12. O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method. Math. Comp.67 (1998) 479-499.  
  13. H.Y. Lee, Fully discrete methods for the nonlinear Schrödinger equation. Comput. Math. Appl.28 (1994) 9-24.  
  14. H.A. Levine, The role of critical exponents in blowup theorems. SIAM Review32 (1990) 262-288.  
  15. H. Nawa, Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity. J. Math. Soc. Japan46 (1994) 557-586.  
  16. A.C. Newell, Solitons in mathematics and mathematical physics. CBMS Appl. Math. Ser.48, SIAM, Philadelphia (1988).  
  17. J.J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I: A general review. Physica Scripta33 (1986) 481-497.  
  18. M.P. Robinson and G. Fairweather, Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math.68 (1994) 355-376.  
  19. K. Rypdal and J.J. Rasmussen, Blow-up in nonlinear Schroedinger equations-II: Similarity structure of the blow-up singularity. Physica Scripta33 (1986) 498-504.  
  20. J.M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schroedinger equation. Math. Comp.43 (1984) 21-27.  
  21. W.A. Strauss, Nonlinear wave equations. CBMS Regional Conference Series Math. No. 73, AMS, Providence, RI (1989).  
  22. V.I. Talanov, Self-focusing of wave beams in nonlinear media. JETP Lett.2 (1965) 138-141.  
  23. V. Thomée, Galerkin finite-element methods for parabolic problems. Springer Series Comput. Math.25, Springer-Verlag, Berlin, Heidelberg (1997).  
  24. Y. Tourigny, Optimal H1 estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal.11 (1991) 509-523.  
  25. M. Tsutsumi and N. Hayashi, Classical solutions of nonlinear Schrödinger equations in higher dimensions. Math. Z.177 (1981) 217-234.  
  26. V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP35 (1972) 908-922.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.