The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Monotone operators in divergence form with x -dependent multivalued graphs

Gilles FrancfortFrançois MuratLuc Tartar — 2004

Bollettino dell'Unione Matematica Italiana

We prove the existence of solutions to - div a x , grad u = f , together with appropriate boundary conditions, whenever a x , e is a maximal monotone graph in e , for every fixed x . We propose an adequate setting for this problem, in particular as far as measurability is concerned. It consists in looking at the graph after a 45 rotation, for every fixed x ; in other words, the graph d a x , e is defined through d - e = φ x , d + e , where φ is a Carathéodory contraction in R N . This definition is shown to be equivalent to the fact that a ( x , ) is pointwise monotone...

Spatial heterogeneity in 3D-2D dimensional reduction

Jean-François BabadjianGilles A. Francfort — 2005

ESAIM: Control, Optimisation and Calculus of Variations

A justification of heterogeneous membrane models as zero-thickness limits of a cylindral three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995). Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté et al. (2002), the case where external loads induce a density of bending moment that produces a Cosserat vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem...

On periodic homogenization in perfect elasto-plasticity

Gilles A. FrancfortAlessandro Giacomini — 2014

Journal of the European Mathematical Society

The limit behavior of a periodic assembly of a finite number of elasto-plastic phases is investigated as the period becomes vanishingly small. A limit quasi-static evolution is derived through two-scale convergence techniques. It can be thermodynamically viewed as an elasto-plastic model, albeit with an infinite number of internal variables.

Spatial heterogeneity in 3D-2D dimensional reduction

Jean-François BabadjianGilles A. Francfort — 2010

ESAIM: Control, Optimisation and Calculus of Variations

A justification of heterogeneous membrane models as zero-thickness limits of a cylindral three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995). Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté (2002), the case where external loads induce a density of bending moment that produces a Cosserat vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem of -convergence...

Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case

Gilles A. FrancfortNam Q. LeSylvia Serfaty — 2009

ESAIM: Control, Optimisation and Calculus of Variations

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.

Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case

Gilles A. FrancfortNam Q. LeSylvia Serfaty — 2008

ESAIM: Control, Optimisation and Calculus of Variations

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.

Page 1

Download Results (CSV)