The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Discreteness of the spectrum for some differential operators with unbounded coefficients in R n

Giorgio MetafuneDiego Pallara — 2000

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give sufficient conditions for the discreteness of the spectrum of differential operators of the form A u = - u + F , u in L μ 2 R n where d μ x = e - F x d x and for Schrödinger operators in L 2 R n . Our conditions are also necessary in the case of polynomial coefficients.

The domain of the Ornstein-Uhlenbeck operator on an L p -space with invariant measure

Giorgio MetafuneJan PrüssAbdelaziz RhandiRoland Schnaubelt — 2002

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We show that the domain of the Ornstein-Uhlenbeck operator on L p ( N , μ d x ) equals the weighted Sobolev space W 2 , p ( N , μ d x ) , where μ d x is the corresponding invariant measure. Our approach relies on the operator sum method, namely the commutative and the non commutative Dore-Venni theorems.

Page 1

Download Results (CSV)