The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

H functional calculus in real interpolation spaces

Giovanni Dore — 1999

Studia Mathematica

Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and λ ( λ I - A ) - 1 is bounded outside every larger sector) and has a bounded inverse, then A has a bounded H functional calculus in the real interpolation spaces between X and the domain of the operator itself.

H functional calculus in real interpolation spaces, II

Giovanni Dore — 2001

Studia Mathematica

Let A be a linear closed one-to-one operator in a complex Banach space X, having dense domain and dense range. If A is of type ω (i.e.the spectrum of A is contained in a sector of angle 2ω, symmetric about the real positive axis, and | | λ ( λ I - A ) - 1 | | is bounded outside every larger sector), then A has a bounded H functional calculus in the real interpolation spaces between X and the intersection of the domain and the range of the operator itself.

H functional calculus for sectorial and bisectorial operators

Giovanni DoreAlberto Venni — 2005

Studia Mathematica

We give a concise exposition of the basic theory of H functional calculus for N-tuples of sectorial or bisectorial operators, with respect to operator-valued functions; moreover we restate and prove in our setting a result of N. Kalton and L. Weis about the boundedness of the operator f ( T , . . . , T N ) when f is an R-bounded operator-valued holomorphic function.

H functional calculus for an elliptic operator on a half-space with general boundary conditions

Giovanni DoreAlberto Venni — 2002

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let A be the L p realization ( 1 < p < ) of a differential operator P ( D x , D t ) on n × + with general boundary conditions B k ( D x , D t ) u ( x , 0 ) = 0 ( 1 k m ). Here P is a homogeneous polynomial of order 2 m in n + 1 complex variables that satisfies a suitable ellipticity condition, and for 1 k m B k is a homogeneous polynomial of order m k < 2 m ; it is assumed that the usual complementing condition is satisfied. We prove that A is a sectorial operator with a bounded H functional calculus.

Page 1

Download Results (CSV)