The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and is bounded outside every larger sector) and has a bounded inverse, then A has a bounded functional calculus in the real interpolation spaces between X and the domain of the operator itself.
Let A be a linear closed one-to-one operator in a complex Banach space X, having dense domain and dense range. If A is of type ω (i.e.the spectrum of A is contained in a sector of angle 2ω, symmetric about the real positive axis, and is bounded outside every larger sector), then A has a bounded functional calculus in the real interpolation spaces between X and the intersection of the domain and the range of the operator itself.
We give a concise exposition of the basic theory of functional calculus for N-tuples of sectorial or bisectorial operators, with respect to operator-valued functions; moreover we restate and prove in our setting a result of N. Kalton and L. Weis about the boundedness of the operator when f is an R-bounded operator-valued holomorphic function.
Let be the realization () of a differential operator on with general boundary conditions (). Here is a homogeneous polynomial of order in complex variables that satisfies a suitable ellipticity condition, and for
is a homogeneous polynomial of order ; it is assumed that the usual complementing condition is satisfied. We prove that is a sectorial operator with a bounded functional calculus.
Download Results (CSV)