Sharp results for the mean summability of Fourier series on compact Lie groups.
A convolution operator, bounded on , is bounded on , with the same operator norm, if and are conjugate exponents. It is well known that this fact is false if we replace with a general non-commutative locally compact group . In this paper we give a simple construction of a convolution operator on a suitable compact group , wich is bounded on for every and is unbounded on if .
A convolution operator, bounded on , is bounded on , with the same operator norm, if and are conjugate exponents. It is well known that this fact is false if we replace with a general non-commutative locally compact group . In this paper we give a simple construction of a convolution operator on a suitable compact group , wich is bounded on for every and is unbounded on if .
Let be a symmetric space of the noncompact type, with Laplace–Beltrami operator , and let be the -spectrum of . For in such that , let be the operator on defined formally as . In this paper, we obtain operator norm estimates for for all , and show that these are optimal when is small and when is bounded below .
We prove that on Iwasawa AN groups coming from arbitrary semisimple Lie groups there is a Laplacian with a nonholomorphic functional calculus, not only for but also for , where 1 < p < ∞. This yields a spectral multiplier theorem analogous to the ones known for sublaplacians on stratified groups.
Page 1