Dans cet article on donne une formule explicite pour le caractère de Chern reliant la -
théorie algébrique et l’homologie cyclique négative. On calcule le caractère de Chern des
symboles de Steinberg et de Loday et on donne une preuve élémentaire du fait que le
caractère de Chern est multiplicatif.
On étudie ici les notions d’algèbre de Gerstenhaber à homotopie près et d’homologie des algèbres de Gerstenhaber du point de vue de la théorie des opérades. Précisément, on donne une description explicite des -algèbres à homotopie près (c’est-à-dire d’algèbres sur le modèle minimal de l’opérade des algèbres de Gerstenhaber). On décrit également le complexe calculant l’homologie des -algèbres. On donne une suite spectrale qui converge vers cette homologie et quelques exemples de calculs. Enfin...
We develop a machinery of Chen iterated integrals for higher Hochschild complexes. These are complexes whose differentials are modeled on an arbitrary simplicial set much in the same way the ordinary Hochschild differential is modeled on the circle. We use these to give algebraic models for general mapping spaces and define and study the surface product operation on the homology of mapping spaces of surfaces of all genera into a manifold. This is an analogue of the loop product in string topology....
Download Results (CSV)