Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun LiuJian ChangGuiyun Chen — 2020

Czechoslovak Mathematical Journal

For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with order 4 is also...

A note on the Π -property of some subgroups of finite groups

Zhengtian QiuGuiyun ChenJianjun Liu — 2024

Czechoslovak Mathematical Journal

Let H be a subgroup of a finite group G . We say that H satisfies the Π -property in G if for any chief factor L / K of G , | G / K : N G / K ( H K / K L / K ) | is a π ( H K / K L / K ) -number. We obtain some criteria for the p -supersolubility or p -nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the Π -property.

Page 1

Download Results (CSV)