The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun LiuJian ChangGuiyun Chen — 2020

Czechoslovak Mathematical Journal

For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with order 4 is also...

On Π -property of some maximal subgroups of Sylow subgroups of finite groups

Zhengtian QiuJianjun LiuGuiyun Chen — 2023

Czechoslovak Mathematical Journal

Let H be a subgroup of a finite group G . We say that H satisfies the Π -property in G if for any chief factor L / K of G , | G / K : N G / K ( H K / K L / K ) | is a π ( H K / K L / K ) -number. We study the influence of some p -subgroups of G satisfying the Π -property on the structure of G , and generalize some known results.

A note on the Π -property of some subgroups of finite groups

Zhengtian QiuGuiyun ChenJianjun Liu — 2024

Czechoslovak Mathematical Journal

Let H be a subgroup of a finite group G . We say that H satisfies the Π -property in G if for any chief factor L / K of G , | G / K : N G / K ( H K / K L / K ) | is a π ( H K / K L / K ) -number. We obtain some criteria for the p -supersolubility or p -nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the Π -property.

Page 1

Download Results (CSV)