The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields

Hans Roskam — 2001

Journal de théorie des nombres de Bordeaux

Let S be a linear integer recurrent sequence of order k 3 , and define P S as the set of primes that divide at least one term of S . We give a heuristic approach to the problem whether P S has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that P S has positive lower density for “generic” sequences S . Some numerical examples are included.

Artin's primitive root conjecture for quadratic fields

Hans Roskam — 2002

Journal de théorie des nombres de Bordeaux

Fix an element α in a quadratic field K . Define S as the set of rational primes p , for which α has maximal order modulo p . Under the assumption of the generalized Riemann hypothesis, we show that S has a density. Moreover, we give necessary and sufficient conditions for the density of S to be positive.

Page 1

Download Results (CSV)