Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields
Let be a linear integer recurrent sequence of order , and define as the set of primes that divide at least one term of . We give a heuristic approach to the problem whether has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that has positive lower density for “generic” sequences . Some numerical examples are included.