Differenzierbarkeitseigenschaften Greenscher Funktionen elliptischer Differentialoperatoren.
Let , where the sum is taken over the lattice of all points k in having integer-valued components, j∈ℕ and . Let be either or (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on The aim of the paper is to clarify under what conditions is equivalent to .
The paper deals with quarkonial decompositions and entropy numbers in weighted function spaces on hyperbolic manifolds. We use these results to develop a spectral theory of related Schrödinger operators in these hyperbolic worlds.
This paper deals with wavelet frames for a large class of distributions on euclidean n-space, including all compactly supported distributions. These representations characterize the global, local, and pointwise regularity of the distribution considered.
The paper deals with spaces of Sobolev type where s > 0, 0 < p ≤ ∞, and their relations to corresponding spaces of Besov type where s > 0, 0 < p ≤ ∞, 0 < q ≤ ∞, in terms of embedding and real interpolation.
Function spaces of type B and F cover as special cases classical and fractional Sobolev spaces, classical Besov spaces, Hölder-Zygmund spaces and inhomogeneous Hardy spaces. In the last 2 or 3 decades they haven been studied preferably on R and in smooth bounded domains in R including numerous applications to pseudodifferential operators, elliptic boundary value problems etc. To a lesser extent spaces of this type have been considered in Lipschitz domains. But in...
The paper deals with dimension-controllable (tractable) embeddings of Besov spaces on n-dimensional cubes into Zygmund spaces. This can be expressed in terms of tractability envelopes.
Page 1 Next