The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A group has the endomorphism kernel property (EKP) if every congruence relation on is the kernel of an endomorphism on . In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP.
We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).
We show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP), give a new proof that all finite relative Stone algebras have SEKP and also fully characterize dual generalized Boolean algebras which possess SEKP.
Download Results (CSV)