The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Condensations of Tychonoff universal topological algebras

Constancio Hernández — 2001

Commentationes Mathematicae Universitatis Carolinae

Let ( L , 𝒯 ) be a Tychonoff (regular) paratopological group or algebra over a field or ring K or a topological semigroup. If nw ( L , 𝒯 ) τ and nw ( K ) τ , then there exists a Tychonoff (regular) topology 𝒯 * 𝒯 such that w ( L , 𝒯 * ) τ and ( L , 𝒯 * ) is a paratopological group, algebra over K or a topological semigroup respectively.

Subgroups of -factorizable groups

Constancio HernándezMihail G. Tkachenko — 1998

Commentationes Mathematicae Universitatis Carolinae

The properties of -factorizable groups and their subgroups are studied. We show that a locally compact group G is -factorizable if and only if G is σ -compact. It is proved that a subgroup H of an -factorizable group G is -factorizable if and only if H is z -embedded in G . Therefore, a subgroup of an -factorizable group need not be -factorizable, and we present a method for constructing non- -factorizable dense subgroups of a special class of -factorizable groups. Finally, we construct a closed...

The Lindelöf property and pseudo- 1 -compactness in spaces and topological groups

Constancio HernándezMihail G. Tkachenko — 2008

Commentationes Mathematicae Universitatis Carolinae

We introduce and study, following Z. Frol’ık, the class ( 𝒫 ) of regular P -spaces X such that the product X × Y is pseudo- 1 -compact, for every regular pseudo- 1 -compact P -space Y . We show that every pseudo- 1 -compact space which is locally ( 𝒫 ) is in ( 𝒫 ) and that every regular Lindelöf P -space belongs to ( 𝒫 ) . It is also proved that all pseudo- 1 -compact P -groups are in ( 𝒫 ) . The problem of characterization of subgroups of -factorizable (equivalently, pseudo- 1 -compact) P -groups is considered as well. We give some necessary...

Subgroups and products of -factorizable P -groups

Constancio HernándezMihail G. Tkachenko — 2004

Commentationes Mathematicae Universitatis Carolinae

We show that subgroup of an -factorizable abelian P -group is topologically isomorphic to a subgroup of another -factorizable abelian P -group. This implies that closed subgroups of -factorizable P -groups are not necessarily -factorizable. We also prove that if a Hausdorff space Y of countable pseudocharacter is a continuous image of a product X = i I X i of P -spaces and the space X is pseudo- ω 1 -compact, then n w ( Y ) 0 . In particular, direct products of -factorizable P -groups are -factorizable and ω -stable.

Page 1

Download Results (CSV)