Existence theorems for boundary value problems for strongly nonlinear elliptic systems.
Let Ω be a measure space, and E, F be separable Banach spaces. Given a multifunction , denote by the set of all measurable selections of the multifunction , s ↦ f(s,x(s)), for a function x: Ω → E. First, we obtain new theorems on H-upper/H-lower/lower semicontinuity (without assuming any conditions on the growth of the generating multifunction f(s,u) with respect to u) for the multivalued (Nemytskiĭ) superposition operator mapping some open domain G ⊂ X into , where X and Y are Köthe-Bochner...
We establish the Euler-Lagrange inclusion of a nonsmooth integral functional defined on Orlicz-Sobolev spaces. This result is achieved through variational techniques in nonsmooth analysis and an integral representation formula for the Clarke generalized gradient of locally Lipschitz integral functionals defined on Orlicz spaces.
Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put . Consider the integral functional G defined on some non--type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued C-subgradient)...
In this paper we deal with the energy functionals for the elastic thin film ω ⊂ ℝ² involving the bending moments. The effective energy functional is obtained by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and...
We present two existence results for the Dirichlet elliptic inclusion with an upper semicontinuous multivalued right-hand side in exponential-type Orlicz spaces involving a vector Laplacian, subject to Dirichlet boundary conditions on a domain Ω⊂ ℝ². The first result is obtained via the multivalued version of the Leray-Schauder principle together with the Nakano-Dieudonné sequential weak compactness criterion. The second result is obtained by using the nonsmooth variational technique together with...
Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into . The paper deals with Y-weak cluster points ϕ̅ of the sequence in X, where is measurable for j ∈ ℕ and is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set , the integral exists for and on , where is a measurable-dependent family of Radon probability measures on .
In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type...
We present a new continuous selection theorem, which unifies in some sense two well known selection theorems; namely we prove that if F is an H-upper semicontinuous multivalued map on a separable metric space X, G is a lower semicontinuous multivalued map on X, both F and G take nonconvex -decomposable closed values, the measure space T with a σ-finite measure μ is nonatomic, 1 ≤ p < ∞, is the Bochner-Lebesgue space of functions defined on T with values in a Banach space E, F(x) ∩ G(x) ≠ ∅...
CONTENTSIntroduction.......................................................................................................... 51. Multifunctions and selections............................................................................... 7 1. Multifunctions and selections.................................................................. 7 2. Continuous multifunctions and selections........................................... 9 3. Measurable multifunctions and selections...............................................
Page 1