Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Minus total domination in graphs

Hua Ming XingHai-Long Liu — 2009

Czechoslovak Mathematical Journal

A three-valued function f V { - 1 , 0 , 1 } defined on the vertices of a graph G = ( V , E ) is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every v V , f ( N ( v ) ) 1 , where N ( v ) consists of every vertex adjacent to v . The weight of an MTDF is f ( V ) = f ( v ) , over all vertices v V . The minus total domination number of a graph G , denoted γ t - ( G ) , equals the minimum weight of an MTDF of G . In this paper, we discuss some properties of minus total domination on a graph G and obtain...

An upper bound for domination number of 5-regular graphs

Hua Ming XingLiang SunXue-Gang Chen — 2006

Czechoslovak Mathematical Journal

Let G = ( V , E ) be a simple graph. A subset S V is a dominating set of G , if for any vertex u V - S , there exists a vertex v S such that u v E . The domination number, denoted by γ ( G ) , is the minimum cardinality of a dominating set. In this paper we will prove that if G is a 5-regular graph, then γ ( G ) 5 14 n .

On signed majority total domination in graphs

Hua Ming XingLiang SunXue-Gang Chen — 2005

Czechoslovak Mathematical Journal

We initiate the study of signed majority total domination in graphs. Let G = ( V , E ) be a simple graph. For any real valued function f V and S V , let f ( S ) = v S f ( v ) . A signed majority total dominating function is a function f V { - 1 , 1 } such that f ( N ( v ) ) 1 for at least a half of the vertices v V . The signed majority total domination number of a graph G is γ m a j t ( G ) = min { f ( V ) f is a signed majority total dominating function on G } . We research some properties of the signed majority total domination number of a graph G and obtain a few lower bounds of γ m a j t ( G ) .

On signed distance- k -domination in graphs

Hua Ming XingLiang SunXue-Gang Chen — 2006

Czechoslovak Mathematical Journal

The signed distance- k -domination number of a graph is a certain variant of the signed domination number. If v is a vertex of a graph G , the open k -neighborhood of v , denoted by N k ( v ) , is the set N k ( v ) = { u u v and d ( u , v ) k } . N k [ v ] = N k ( v ) { v } is the closed k -neighborhood of v . A function f V { - 1 , 1 } is a signed distance- k -dominating function of G , if for every vertex v V , f ( N k [ v ] ) = u N k [ v ] f ( u ) 1 . The signed distance- k -domination number, denoted by γ k , s ( G ) , is the minimum weight of a signed distance- k -dominating function on G . The values of γ 2 , s ( G ) are found for graphs with small diameter,...

A note on the independent domination number of subset graph

Xue-Gang ChenDe-xiang MaHua Ming XingLiang Sun — 2005

Czechoslovak Mathematical Journal

The independent domination number i ( G ) (independent number β ( G ) ) is the minimum (maximum) cardinality among all maximal independent sets of G . Haviland (1995) conjectured that any connected regular graph G of order n and degree δ 1 2 n satisfies i ( G ) 2 n 3 δ 1 2 δ . For 1 k l m , the subset graph S m ( k , l ) is the bipartite graph whose vertices are the k - and l -subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for i ( S m ( k , l ) ) and prove that...

Page 1

Download Results (CSV)