Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On the divisor function over Piatetski-Shapiro sequences

Hui WangYu Zhang — 2023

Czechoslovak Mathematical Journal

Let [ x ] be an integer part of x and d ( n ) be the number of positive divisor of n . Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6 5 , n x d ( [ n c ] ) = c x log x + ( 2 γ - c ) x + O x log x , where γ is the Euler constant and [ n c ] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.

A Hardy type inequality for W 0 m , 1 ( Ω ) functions

Hernán CastroJuan DávilaHui Wang — 2013

Journal of the European Mathematical Society

We consider functions u W 0 m , 1 ( Ω ) , where Ω N is a smooth bounded domain, and m 2 is an integer. For all j 0 , 1 k m - 1 , such that 1 j + k m , we prove that i u ( x ) d ( x ) m - j - k W 0 k , 1 ( Ω ) with k ( i u ( x ) d ( x ) m - j - k ) L 1 ( Ω ) C u W m , 1 ( Ω ) , where d is a smooth positive function which coincides with dist ( x , Ω ) near Ω , and l denotes any partial differential operator of order l .

Page 1

Download Results (CSV)