The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 18 of 18

Showing per page

Order by Relevance | Title | Year of publication

Arithmetic progressions in sumsets

Imre Z. Ruzsa — 1991

Acta Arithmetica

1. Introduction. Let A,B ⊂ [1,N] be sets of integers, |A|=|B|=cN. Bourgain [2] proved that A+B always contains an arithmetic progression of length e x p ( l o g N ) 1 / 3 - ε . Our aim is to show that this is not very far from the best possible. Theorem 1. Let ε be a positive number. For every prime p > p₀(ε) there is a symmetric set A of residues mod p such that |A| > (1/2-ε)p and A + A contains no arithmetic progression of length (1.1) e x p ( l o g p ) 2 / 3 + ε . A set of residues can be used to get a set of integers in an obvious way. Observe...

Sumsets of Sidon sets

Imre Z. Ruzsa — 1996

Acta Arithmetica

1. Introduction. A Sidon set is a set A of integers with the property that all the sums a+b, a,b∈ A, a≤b are distinct. A Sidon set A⊂ [1,N] can have as many as (1+o(1))√N elements, hence  N/2 sums. The distribution of these sums is far from arbitrary. Erdős, Sárközy and T. Sós [1,2] established several properties of these sumsets. Among other things, in [2] they prove that A + A cannot contain an interval longer than C√N, and give an example that N 1 / 3 is possible. In [1] they show that A + A contains...

Polynomial growth of sumsets in abelian semigroups

Melvyn B. NathansonImre Z. Ruzsa — 2002

Journal de théorie des nombres de Bordeaux

Let S be an abelian semigroup, and A a finite subset of S . The sumset h A consists of all sums of h elements of A , with repetitions allowed. Let | h A | denote the cardinality of h A . Elementary lattice point arguments are used to prove that an arbitrary abelian semigroup has polynomial growth, that is, there exists a polynomial p ( t ) such that | h A | = p ( h ) for all sufficiently large h . Lattice point counting is also used to prove that sumsets of the form h 1 A 1 + + h r A r have multivariate polynomial growth.

Page 1

Download Results (CSV)