Leitfaden für den geometrischen Unterricht an Gymnasien und ähnlichen Lehranstalten
CONTENTS§ 1. Introduction....................................................................................................................................................................... 5§ 2. Preliminaries.................................................................................................................................................................... 6§ 3. Smoothness........................................................................................................................................................................
CONTENTS1. Introduction..................................................................................................................................... 52. Terminology and notation.................................................................................................................... 63. Proper maps on contractible telescopes.......................................................................................... 84. The strong shape category.....................................................................................................................
AbstractLet a family S of spaces and a class F of mappings between members of S be given. For two spaces X and Y in S we define if there exists a surjection f ∈ F of X onto Y. We investigate the quasi-order in the family of dendrites, where F is one of the following classes of mappings: retractions, monotone, open, confluent or weakly confluent mappings. In particular, we investigate minimal and maximal elements, chains and antichains in the quasi-order , and characterize spaces which can be...
CONTENTSIntroduction................................................................................................................................................................................3I. General properties of k-to-one functions on locally compact spaces1. Multi-valued functions Ф and ψ......................................................................................................................................... 62. The proof of (I.11)..................................................................................................................................................................
CONTENTSINTRODUCTION...................................................................................................................................................................... 31. TERMS NOTATION AND LEMMAS.................................................................................................................................. 4A. Quasi-algebras and algebras..........................................................................................................................................................................
CONTENTSIntroduction.................................................................................................................... 5§ 1. Fundamental concepts for quasi-algebras..................................................... 5§ 2. Peano-algebras.................................................................................................... 13§ 3. Peano-algebras and free quasi-algebras....................................................... 25§ 4. Theorems concerning free sums of quasi-algebras........................................
CONTENTS1. Introduction and preliminaries.............................................................................. 52. Pre-scategories and scategories......................................................................... 63. Scategorization......................................................................................................... 84. Abstract scategories................................................................................................ 95. Substructures and products...
Page 1 Next