The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 11749

Showing per page

Order by Relevance | Title | Year of publication

On fans

J. J. Charatonik — 1967

CONTENTS§ 1. Introduction....................................................................................................................................................................... 5§ 2. Preliminaries.................................................................................................................................................................... 6§ 3. Smoothness........................................................................................................................................................................

Strong shape theory

J. DydakJ. Segal — 1981

CONTENTS1. Introduction..................................................................................................................................... 52. Terminology and notation.................................................................................................................... 63. Proper maps on contractible telescopes.......................................................................................... 84. The strong shape category.....................................................................................................................

Mapping hierarchy for dendrites

AbstractLet a family S of spaces and a class F of mappings between members of S be given. For two spaces X and Y in S we define Y F X if there exists a surjection f ∈ F of X onto Y. We investigate the quasi-order F in the family of dendrites, where F is one of the following classes of mappings: retractions, monotone, open, confluent or weakly confluent mappings. In particular, we investigate minimal and maximal elements, chains and antichains in the quasi-order F , and characterize spaces which can be...

On two-to-one continuous functions

J. Mioduszewski — 1961

CONTENTSIntroduction................................................................................................................................................................................3I. General properties of k-to-one functions on locally compact spaces1. Multi-valued functions Ф and ψ......................................................................................................................................... 62. The proof of (I.11)..................................................................................................................................................................

A theory of extensions of quasi-algebras to algebras

J. Słomiński — 1964

CONTENTSINTRODUCTION...................................................................................................................................................................... 31. TERMS NOTATION AND LEMMAS.................................................................................................................................. 4A. Quasi-algebras and algebras..........................................................................................................................................................................

Peano-algebras and quasi-algebras

J. Słomiński — 1968

CONTENTSIntroduction.................................................................................................................... 5§ 1. Fundamental concepts for quasi-algebras..................................................... 5§ 2. Peano-algebras.................................................................................................... 13§ 3. Peano-algebras and free quasi-algebras....................................................... 25§ 4. Theorems concerning free sums of quasi-algebras........................................

On categories of structures and classes of algebras

J. Jeżek — 1970

CONTENTS1. Introduction and preliminaries.............................................................................. 52. Pre-scategories and scategories......................................................................... 63. Scategorization......................................................................................................... 84. Abstract scategories................................................................................................ 95. Substructures and products...

Page 1 Next

Download Results (CSV)