For a Tychonoff space , we will denote by the set of its isolated points and will be equal to . The symbol denotes the space of real-valued continuous functions defined on . is the Cartesian product with its box topology, and is with the topology inherited from . By we denote the set can be continuously extended to all of . A space is almost--resolvable if it can be partitioned by a countable family of subsets in such a way that every non-empty open subset of has a non-empty...
We continue the study of almost--resolvable spaces beginning in A. Tamariz-Mascar’ua, H. Villegas-Rodr’ıguez, , Comment. Math. Univ. Carolin. (2002), no. 4, 687–705. We prove in ZFC: (1) every crowded space with countable tightness and every space with -weight is hereditarily almost--resolvable, (2) every crowded paracompact space which is the closed preimage of a crowded Fréchet space in such a way that the crowded part of each fiber is -resolvable, has this property too, and (3)...
Download Results (CSV)