Programme de classification hiérarchique par l'algorithme de la recherche en chaîne des voisins réciproques
In this paper we study the periodic-Neumann boundary value problem for a class of nonlinear parabolic equations. We prove a new uniqueness result and study the structure of the set of solutions when there exist more than one solution. The ideas are applied to a Neumann problem for an elliptic equation.
In this paper, we introduce the concept of upper and lower solutions for third order periodic boundary value problems. We show that the monotone iterative technique is valid and obtain the extremal solutions as limits of monotone sequences. We first present a new maximum principle for ordinary differential inequalities of third order that is interesting by itself.
We obtain an algebraic interpretation by means of the Picard-Vessiot theory of a result by Ziglin about the self-intersection of complex separatrices of time-periodically perturbed one-degree of freedom complex analytical Hamiltonian systems.
Page 1 Next