We show that the modular functions j 1,N generate function fields of the modular curve X 1(N), N ∈ {7; 8; 9; 10; 12}, and apply them to construct ray class fields over imaginary quadratic fields.
We present some completely normal elements in the maximal real subfields of cyclotomic fields over the field of rational numbers, relying on the criterion for normal element developed in [Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116]. And, we further find completely normal elements in certain abelian extensions of modular function fields in terms of Siegel functions.
We find a generator of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.
Download Results (CSV)