Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Differential algebraic equations of Filippov type

Biák, MartinJanovská, Drahoslava — 2015

Application of Mathematics 2015

We will study discontinuous dynamical systems of Filippov-type. Mathematically, Filippov-type systems are defined as a set of first-order differential equations with discontinuous right-hand side. These systems arise in various applications, e.g. in control theory (so called relay feedback systems), in chemical engineering (an ideal gas--liquid system), or in biology (predator-prey models). We will show the way how to extend these models by a set of algebraic equations and then study the resulting...

Zero points of quadratic matrix polynomials

Opfer, GerhardJanovská, Drahoslava — 2013

Applications of Mathematics 2013

Our aim is to classify and compute zeros of the quadratic two sided matrix polynomials, i.e. quadratic polynomials whose matrix coefficients are located at both sides of the powers of the matrix variable. We suppose that there are no multiple terms of the same degree in the polynomial 𝐩 , i.e., the terms have the form 𝐀 j 𝐗 j 𝐁 j , where all quantities 𝐗 , 𝐀 j , 𝐁 j , j = 0 , 1 , ... , N , are square matrices of the same size. Both for classification and computation, the essential tool is the description of the polynomial 𝐩 by a matrix equation...

Numerical model of a pine in a wind

Jan KorbelářDrahoslava Janovská — 1999

Applications of Mathematics

Steady-state nonlinear differential equations govering the stem curve of a wind-loaded pine are derived and solved numerically. Comparison is made between the results computed and the data from photographs of a pine stem during strong wind. The pine breaking is solved at the end.

Computing the differential of an unfolded contact diffeomorphism

Klaus BöhmerDrahoslava JanovskáVladimír Janovský — 2003

Applications of Mathematics

Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism Φ linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential D Φ ( 0 ) of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of D Φ ( 0 ) . Singularity classes containing bifurcation points with c o d i m 3 , c o r a n k = 1 are considered.

Page 1

Download Results (CSV)