The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider a contact problem of planar elastic bodies. We adopt Coulomb friction as (an implicitly defined) constitutive law. We will investigate highly simplified lumped parameter models where the contact boundary consists of just one point. In particular, we consider the relevant static and dynamic problems. We are interested in numerical solution of both problems. Even though the static and dynamic problems are qualitatively different, they can be solved by similar piecewise-smooth continuation...
A new technique for computing analytic SVD is proposed. The idea is to follow branches for just one selected singular value and the corresponding left/right singular vector.
We consider a macroscopic follow-the-leader model of a road traffic. The novelty is that we incorporate the possibility to overtake a slower car. We introduce two ways to simulate overtaking.
One is based on swapping initial conditions after the overtaking occurs.
Second approach is to formulate the problem as a Filippov system with discontinuous right-hand sides.
Consider contact problem with Coulomb friction on two planar domains. In order to find non-unique solutions we propose a new path following algorithm: Given a linear loading path we approximate the corresponding solution path. It consists of oriented piecewise linear branches connected by transition points. We developed a) predictor-corrector algorithm to follow oriented linear branches, b) branching and orientation indicators to detect transition points. The techniques incorporate semi-smooth Newton...
The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter , which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries....
The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.
Assuming an incident wave to be a field source, we calculate the field potential in a neighborhood of an inhomogeneous body. This problem which has been formulated in can be reduced to a bounded domain. Namely, a boundary condition for the potential is formulated on a sphere. Then the potential satisfies a well posed boundary value problem in a ball containing the body. A numerical approximation is suggested and its convergence is analyzed.
The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.
The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.
The global convergence of a direct method for determining turning (limit) points of a parameter-dependent mapping is analysed. It is assumed that the relevant extended system has a singular root for a special parameter value. The singular root is clasified as a (i.e., as a turning point). Then, the Theorz for Imperfect Bifurcation offers a particular scenario for the split of the singular root into a finite number of regular roots (turning points) due to a given parameter imperfection. The relationship...
Download Results (CSV)