Currently displaying 1 – 20 of 23

Showing per page

Order by Relevance | Title | Year of publication

Numerical analysis of a lumped parameter friction model

Janovský, Vladimír — 2015

Application of Mathematics 2015

We consider a contact problem of planar elastic bodies. We adopt Coulomb friction as (an implicitly defined) constitutive law. We will investigate highly simplified lumped parameter models where the contact boundary consists of just one point. In particular, we consider the relevant static and dynamic problems. We are interested in numerical solution of both problems. Even though the static and dynamic problems are qualitatively different, they can be solved by similar piecewise-smooth continuation...

On a traffic problem

Buřič, LuborJanovský, Vladimír — 2006

Programs and Algorithms of Numerical Mathematics

We consider a macroscopic follow-the-leader model of a road traffic. The novelty is that we incorporate the possibility to overtake a slower car. We introduce two ways to simulate overtaking. One is based on swapping initial conditions after the overtaking occurs. Second approach is to formulate the problem as a Filippov system with discontinuous right-hand sides.

Path-following the static contact problem with Coulomb friction

Haslinger, JaroslavJanovský, VladimírKučera, Radek — 2013

Applications of Mathematics 2013

Consider contact problem with Coulomb friction on two planar domains. In order to find non-unique solutions we propose a new path following algorithm: Given a linear loading path we approximate the corresponding solution path. It consists of oriented piecewise linear branches connected by transition points. We developed a) predictor-corrector algorithm to follow oriented linear branches, b) branching and orientation indicators to detect transition points. The techniques incorporate semi-smooth Newton...

Analysis of pattern formation using numerical continuation

Vladimír Janovský — 2022

Applications of Mathematics

The paper deals with the issue of self-organization in applied sciences. It is particularly related to the emergence of Turing patterns. The goal is to analyze the domain size driven instability: We introduce the parameter L , which scales the size of the domain. We investigate a particular reaction-diffusion model in 1-D for two species. We consider and analyze the steady-state solution. We want to compute the solution branches by numerical continuation. The model in question has certain symmetries....

On a 1-D model of stress relaxation in an annealed glass

Vladimír JanovskýDavid Just — 2002

Applications of Mathematics

A 1-D model of a slab of glass of a small thickness is considered. The governing equations are those of the classical 1-D linear viscoelasticity. A load due to the temperature gradients is assumed. The aim is to model the process called annealing. It is shown that an additional load due to structural strain is crucial for the success of the model. Algorithms of a numerical solution of the governing equations are proposed. Numerical results are presented and commented.

Continuation of invariant subspaces via the Recursive Projection Method

Vladimír JanovskýO. Liberda — 2003

Applications of Mathematics

The Recursive Projection Method is a technique for continuation of both the steady states and the dominant invariant subspaces. In this paper a modified version of the RPM called projected RPM is proposed. The modification underlines the stabilization effect. In order to improve the poor update of the unstable invariant subspace we have applied subspace iterations preconditioned by Cayley transform. A statement concerning the local convergence of the resulting method is proved. Results of numerical...

Contact problem of two elastic bodies. I

Vladimír JanovskýPetr Procházka — 1980

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

Contact problem of two elastic bodies. II

Vladimír JanovskýPetr Procházka — 1980

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

Numerical treatment of 3-dimensional potential problem

Vladimír DrápalíkVladimír Janovský — 1988

Aplikace matematiky

Assuming an incident wave to be a field source, we calculate the field potential in a neighborhood of an inhomogeneous body. This problem which has been formulated in 𝐑 3 can be reduced to a bounded domain. Namely, a boundary condition for the potential is formulated on a sphere. Then the potential satisfies a well posed boundary value problem in a ball containing the body. A numerical approximation is suggested and its convergence is analyzed.

Contact problem of two elastic bodies. III

Vladimír JanovskýPetr Procházka — 1980

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

A global analysis of Newton iterations for determining turning points

Vladimír JanovskýViktor Seige — 1993

Applications of Mathematics

The global convergence of a direct method for determining turning (limit) points of a parameter-dependent mapping is analysed. It is assumed that the relevant extended system has a singular root for a special parameter value. The singular root is clasified as a b i f u r c a t i o n s i n g u l a r i t y (i.e., as a d e g e n e r a t e turning point). Then, the Theorz for Imperfect Bifurcation offers a particular scenario for the split of the singular root into a finite number of regular roots (turning points) due to a given parameter imperfection. The relationship...

Page 1 Next

Download Results (CSV)