Complexité et géométrie réelle
On caractérise, à l’aide de la notion algébrique d’idéal réel, les idéaux fermés de type fini de l’anneau des fonctions différentiables sur ayant la propriété des zéros, et les idéaux fermés principaux de ayant la propriété des zéros.
Soit un morphisme propre relativement algébrique entre espaces semi-analytiques. On montre que si désigne l’anneau des fonctions de classe sur , l’image par de est fermée dans muni de sa topologie naturelle d’espace de Frechet ; ceci généralise un résultat précédent de J.-C. Tougeron (lui-même généralisant un résultat de Glaeser) qui traite du cas semi-algébrique. La méthode est tout à fait analogue et utilise des propriétés algébriques de l’anneau des fonctions Nash-analytiques introduit...
Let ξ be a polynomial vector field on with coefficients of degree d and P be a polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory. Bounds doubly exponential in terms of n are already known ([9,5,10]). In this paper, we prove that, when n=3, there is a bound of the form . In Control Theory, such a bound can be used to give an estimate of the degree of nonholonomy...
Let be an integral convex polygon. G. Mikhalkin introduced the notion of, a class of real algebraic curves, defined by polynomials supported on and contained in the corresponding toric surface. He proved their existence, viamethod, and that the topological type of their real parts is unique (and determined by ). This paper is concerned with the description of the analogous statement in the case of a smoothing of a real plane branch . We introduce the class ofsmoothings of by passing through...
Page 1