The paper is devoted to the computation of two-phase flows in a porous medium
when applying the two-fluid approach.
The basic formulation is presented first, together with the main properties
of the model. A few basic analytic solutions are then provided, some of them corresponding
to solutions of the one-dimensional Riemann problem.
Three distinct Finite-Volume schemes are then introduced. The first two schemes, which rely on the Rusanov scheme,
are shown to give wrong approximations in some...
We construct an approximate Riemann solver for the isentropic Baer−Nunziato two-phase flow model, that is able to cope with arbitrarily small values of the statistical phase fractions. The solver relies on a relaxation approximation of the model for which the Riemann problem is exactly solved for subsonic relative speeds. In an original manner, the Riemann solutions to the linearly degenerate relaxation system are allowed to dissipate the total energy in the vanishing phase regimes, thereby enforcing...
The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density and additional...
The present paper is devoted to the computation of single phase or
two phase flows using the single-fluid approach. Governing equations
rely on Euler equations which may be supplemented by conservation
laws for mass species. Emphasis is given on numerical modelling
with help of Godunov scheme or an approximate form of Godunov scheme
called VFRoe-ncv based on velocity and pressure variables. Three
distinct classes of closure laws to express the internal energy in
terms of pressure, density...
In this work we describe an efficient model for the simulation of a
two-phase flow made of a gas and a granular solid. The starting point is the two-velocity
two-pressure model of Baer and Nunziato
[
(1986) 861–889].
The model is supplemented by
a relaxation source term in order
to take into account the pressure equilibrium between the two phases and
the granular stress in the solid phase. We show that the relaxation
process can be made thermodynamically coherent with an adequate...
Download Results (CSV)