The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Homologie des ensembles semi-pfaffiens

Jean-Marie LionJean-Philippe Rolin — 1996

Annales de l'institut Fourier

Un sous-ensemble pfaffien d’un ouvert semi-analytique M R n est une intersection finie d’ensembles semi-analytiques relativement compacts de R n et de feuilles non spiralantes de certains feuilletages analytiques de codimension 1 de M . Les sous-ensembles semi-pfaffiens de M sont les éléments de la plus petite classe de sous-ensembles de M contenant les sous-ensembles pfaffiens de M , stable par intersection finie, réunion finie et différence symétrique. Les ensembles T -pfaffiens sont les éléments de la...

Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques

Jean-Marie LionJean-Philippe Rolin — 1998

Annales de l'institut Fourier

Soit f ( x , y ) une fonction sous-analytique de R n × R m à valeurs dans R + . Nous montrons que l’intégrale R m f ( x , y ) d y est une fonction log-analytique de x . Nous en déduisons que le volume k -dimensionnel des éléments Y x d’une famille sous-analytique de sous-ensembles sous-analytiques globaux de l’espace euclidien R m est une fonction log-analytique de x . Un corollaire de ce résultat est le caractère log-analytique de la fonction densité k -dimensionnelle d’un sous-analytique global de dimension k en tout point de sa fermeture topologique....

Page 1

Download Results (CSV)