Nous construisons un calcul paradifférentiel adapté à l'équation de Schrödinger qui nous
permet de montrer un théorème de propagation des singularités pour l'équation de
Schrödinger non linéaire en adaptant la méthode de Bony. Nous construisons également la
version tangentielle du calcul précédent qui nous permet de montrer un théorème de
réflexion transverse des singularités pour l'équation de Schrödinger non linéaire. Nous
utilisons alors ce théorème pour calculer l'opérateur...
Nous établissons un lien entre la solution de l’équation de Schrödinger avec conditions de Dirichlet et une équation hyperbolique pour laquelle on peut appliquer les résultats classiques de réflexion des singularités, ce qui nous permet de prouver des résultats de réflexion des singularités pour l’équation de Schrödinger.
We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation , where is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes bounds on the curvature tensor of is a major step towards the proof of the bounded curvature conjecture.
This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.
This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.
This paper reports on the recent proof of the bounded curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.
We consider the focusing nonlinear Schrödinger equations . We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.
Download Results (CSV)