In the paper necessary optimality conditions are derived for the minimization of a locally Lipschitz objective with respect to the consttraints , where is a closed set and is a set-valued map. No convexity requirements are imposed on . The conditions are applied to a generalized mathematical programming problem and to an abstract finite-dimensional optimal control problem.
The paper deals with mathematical programs, where parameter-dependent nonlinear complementarity problems arise as side constraints. Using the generalized differential calculus for nonsmooth and set-valued mappings due to B. Mordukhovich, we compute the so-called coderivative of the map assigning the parameter the (set of) solutions to the respective complementarity problem. This enables, in particular, to derive useful 1st-order necessary optimality conditions, provided the complementarity problem...
The paper concerns a two-level hierarchical game, where the players on each level behave noncooperatively. In this way one can model eg an oligopolistic market with several large and several small firms. We derive two types of necessary conditions for a solution of this game and discuss briefly the possibilities of its computation.
The paper concerns the study of tilt stability of local minimizers in standard problems of nonlinear programming. This notion plays an important role in both theoretical and numerical aspects of optimization and has drawn a lot of attention in optimization theory and its applications, especially in recent years. Under the classical Mangasarian-Fromovitz Constraint Qualification, we establish relationships between tilt stability and some other stability notions in constrained optimization. Involving...
Download Results (CSV)