We study the initial-boundary problem for a nonlinear system of wave equations with Hamilton structure under Dirichlet's condition. We use the local-in-time Strichartz estimates from [Burq et al., J. Amer. Math. Soc. 21 (2008), 831-845], Morawetz-Pohožaev's identity derived in [Miao and Zhu, Nonlinear Anal. 67 (2007), 3136-3151], and an a priori estimate of the solutions restricted to the boundary to show the existence of global and unique solutions.
The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained.
This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.
The local maximal operator for the Schrödinger operators of order α > 1 is shown to be bounded from to L² for any s > 3/8. This improves the previous result of Sjölin on the regularity of solutions to fractional order Schrödinger equations. Our method is inspired by Bourgain’s argument in the case of α = 2. The extension from α = 2 to general α > 1 faces three essential obstacles: the lack of Lee’s reduction lemma, the absence of the algebraic structure of the symbol and the inapplicable...
We investigate the Cauchy problem of the one dimensional Maxwell-Schrödinger (MS) system under the Lorenz gauge condition. Different from the classical case, we consider the electromagnetic and electrostatic potentials which are growing at space infinity. More precisely, the electrostatic potential is allowed to grow linearly, while for the electromagnetic potential the growth is sublinear. Based on the energy estimates and the gauge transformation, we prove the global existence and the uniqueness...
Download Results (CSV)