The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Mixed-norm spaces and interpolation

Joaquín OrtegaJoan Fàbrega — 1994

Studia Mathematica

Let D be a bounded strictly pseudoconvex domain of n with smooth boundary. We consider the weighted mixed-norm spaces A δ , k p , q ( D ) of holomorphic functions with norm f p , q , δ , k = ( | α | k ʃ 0 r 0 ( ʃ D r | D α f | p d σ r ) q / p r δ q / p - 1 d r ) 1 / q . We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces A δ , k p ( D ) and we give results about real and complex interpolation between them. We apply these results to prove that A δ , k p , q ( D ) is the intersection of a Besov space B s p , q ( D ) with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm...

Pointwise multipliers and corona type decomposition in B M O A

J. M. OrtegaJoan Fàbrega — 1996

Annales de l'institut Fourier

In this paper we obtain several characterizations of the pointwise multipliers of the space B M O A in the unit ball B of n . Moreover, if g 1 , ... , g m are holomorphic functions on B , we prove that M g ( f ) ( z ) = j = 1 m g j ( z ) f j ( z ) maps B M O A × ... × B M O A onto B M O A if and only if the functions g j are multipliers of the space B M O A and satisfy j = 1 m | g j ( z ) | δ > 0 .

Division and extension in weighted Bergman-Sobolev spaces.

Joaquín M. OrtegaJoan Fàbrega — 1992

Publicacions Matemàtiques

Let D be a bounded strictly pseudoconvex domain of Cn with C boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D. In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space...

Page 1

Download Results (CSV)