Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

The covariety of perfect numerical semigroups with fixed Frobenius number

María Ángeles Moreno-FríasJosé Carlos Rosales — 2024

Czechoslovak Mathematical Journal

Let S be a numerical semigroup. We say that h S is an isolated gap of S if { h - 1 , h + 1 } S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m ( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family 𝒞 of numerical semigroups that fulfills the following conditions: there exists the minimum of 𝒞 , the intersection of two elements of 𝒞 is again an element of 𝒞 , and S { m ( S ) } 𝒞 for all S 𝒞 such that S min ( 𝒞 ) . We prove that the set 𝒫 ( F ) = { S : S is a perfect numerical semigroup with...

Numerical semigroups with a monotonic Apéry set

José Carlos RosalesPedro A. García-SánchezJuan Ignacio García-GarcíaM. B. Branco — 2005

Czechoslovak Mathematical Journal

We study numerical semigroups S with the property that if m is the multiplicity of S and w ( i ) is the least element of S congruent with i modulo m , then 0 < w ( 1 ) < < w ( m - 1 ) . The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.

Page 1

Download Results (CSV)