The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On the tameness of trivial extension algebras

Ibrahim AssemJosé de la Peña — 1996

Fundamenta Mathematicae

For a finite dimensional algebra A over an algebraically closed field, let T(A) denote the trivial extension of A by its minimal injective cogenerator bimodule. We prove that, if T A is a tilting module and B = E n d T A , then T(A) is tame if and only if T(B) is tame.

On minimal non-tilted algebras

Flávio U. CoelhoJosé A. de la PeñaSonia Trepode — 2008

Colloquium Mathematicae

A minimal non-tilted triangular algebra such that any proper semiconvex subcategory is tilted is called a tilt-semicritical algebra. We study the tilt-semicritical algebras which are quasitilted or one-point extensions of tilted algebras of tame hereditary type. We establish inductive procedures to decide whether or not a given strongly simply connected algebra is tilted.

Trisections of module categories

José A. de la PeñaIdun Reiten — 2007

Colloquium Mathematicae

Let A be a finite-dimensional algebra over a field k. We discuss the existence of trisections (mod₊ A,mod₀ A,mod₋ A) of the category of finitely generated modules mod A satisfying exactness, standardness, separation and adjustment conditions. Many important classes of algebras admit trisections. We describe a construction of algebras admitting a trisection of their module categories and, in special cases, we describe the structure of the components of the Auslander-Reiten quiver lying in mod₀ A.

Substructures of algebras with weakly non-negative Tits form.

José Antonio de la PeñaAndrzej Skowronski — 2007

Extracta Mathematicae

Let A = kQ/I be a finite dimensional basic algebra over an algebraically closed field k presented by its quiver Q with relations I. A fundamental problem in the representation theory of algebras is to decide whether or not A is of tame or wild type. In this paper we consider triangular algebras A whose quiver Q has no oriented paths. We say that A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose support contains all extreme vertices of Q. We prove that if...

Page 1

Download Results (CSV)