The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

A class of transcendental numbers with explicit g-adic expansion and the Jacobi-Perron algorithm

Jun-ichi Tamura — 1992

Acta Arithmetica

In this paper, we give transcendental numbers φ and ψ such that (i) both φ and ψ have explicit g-adic expansions, and simultaneously, (ii) the vector t ( φ , ψ ) has an explicit expression in the Jacobi-Perron algorithm (cf. Theorem 1). Our results can be regarded as a higher-dimensional version of some of the results in [1]-[5] (see also [6]-[8], [10], [11]). The numbers φ and ψ have some connection with algebraic numbers with minimal polynomials x³ - kx² - lx - 1 satisfying (1.1) k ≥ l ≥0, k + l ≥ 2 (k,l...

*-sturmian words and complexity

Izumi NakashimaJun-Ichi TamuraShin-Ichi Yasutomi — 2003

Journal de théorie des nombres de Bordeaux

We give analogs of the complexity p ( n ) and of Sturmian words which are called respectively the * -complexity p * ( n ) and * -Sturmian words. We show that the class of * -Sturmian words coincides with the class of words satisfying p * ( n ) n + 1 , and we determine the structure of * -Sturmian words. For a class of words satisfying p * ( n ) = n + 1 , we give a general formula and an upper bound for p ( n ) . Using this general formula, we give explicit formulae for p ( n ) for some words belonging to this class. In general, p ( n ) can take large values, namely,...

Page 1

Download Results (CSV)