The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, the exact formulae for the Harary indices of tensor product G × Km0,m1,...,mr−1 and the strong product G⊠Km0,m1,...,mr−1 , where Km0,m1,...,mr−1 is the complete multipartite graph with partite sets of sizes m0,m1, . . . ,mr−1 are obtained. Also upper bounds for the Harary indices of tensor and strong products of graphs are estabilished. Finally, the exact formula...
The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, . In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
The Wiener index of a connected graph G, denoted by W(G), is defined as . Similarly, the hyper-Wiener index of a connected graph G, denoted by WW(G), is defined as . The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, the exact formulae for Wiener, hyper-Wiener and vertex PI indices of the strong product , where is the complete multipartite graph with partite sets of sizes...
Download Results (CSV)