The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a commutative Noetherian local ring, be an ideal of and a finitely generated -module such that and , where is the cohomological dimension of with respect to and is the -grade of . Let be the Matlis dual functor, where is the injective hull of the residue field . We show that there exists the following long exact sequence
where is a non-negative integer, is a regular sequence in on and, for an -module , is the th local cohomology module of with respect...
Let be a commutative ring. The annihilator graph of , denoted by , is the undirected graph with all nonzero zero-divisors of as vertex set, and two distinct vertices and are adjacent if and only if , where for , . In this paper, we characterize all finite commutative rings with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings whose annihilator graphs have clique number , or . Also, we investigate some properties of the annihilator...
Let be an ideal in a commutative Noetherian ring . Then the ideal has the strong persistence property if and only if for all , and has the symbolic strong persistence property if and only if for all , where denotes the th symbolic power of . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the...
Download Results (CSV)